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1. Introduction and preliminary

Let I = [c, d] be an interval on the real line R a, b ∈ I, a < b, and f : I → R
be a convex function. We consider the well-known Hadamard’s inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2

In which both inequalities hold in the reversed direction if f is concave. We
note that Hadamard’s inequality may be regarded as a refinement of the
concept of convexity and it follows easily from Jensen’s inequality.

In order to provide various refinements of this result, S.S. Dragomir in [1]
introduced the mapping H : [0, 1] → R, as follows

H(t) : =
1

b− a

∫ b

a
f
(
tx+ (1− t)

a+ b

2

)
dx,

and established several results about Hermite-Hadamard inequality which
some of the main results of H are given below.

Theorem 1.1. Let f : [a, b] ⊆ R → R be a convex function. Then, we have
(i) H is convex on [0, 1].
(ii) One has the following bounds;

(1.2) inf
t∈[0,1]

H(t) = H(0) = f
(a+ b

2

)
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and

(1.3) sup
t∈[0,1]

H(t) = H(1) =
1

b− a

∫ b

a
f(x)dx.

(iii) H increases monotonically on [0, 1].
(iv) The following inequalities hold

f
(a+ b

2

)
≤ 2

b− a

∫ a+3b
4

3a+b
4

f(x)dx

≤
∫ 1

0
H(t)dt

≤ 1

2

(
f
(a+ b

2

)
+

1

b− a

∫ b

a
f(x)dx

)
.

The corresponding double integral mapping F : [0, 1] → R, about Hermite-
Hadamard inequality was considered first in [2] and it was defined as

F (t) : =
1

(b− a)2

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
dxdy.

Some of the main results concerning this mapping are as follows.

Theorem 1.2. Let f : [a, b] ⊆ R → R be a convex function. Then we have
(i) F (12 + τ) = F (12 − τ) for every τ ∈ [0, 12 ] and
F (t) = F (1− t), for all t ∈ [0, 1]
(ii) F is a convex function on [0, 1].
(iii) We have the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a
f(x)dx.

and
inf

t∈[0,1]
F (t) = F (

1

2
)

=
1

(b− a)2

∫ b

a

∫ b

a
f
(x+ y

2

)
dxdy.

(iv) The following inequality holds

f
(x+ y

2

)
≤ F (

1

2
)

(v) F decreases monotonically on [0, 12 ] and increases monotonically on [0, 12 ].
(v) For every t ∈ [0, 1], the following inequality holds

H(t) ≤ F (t).

Numerous articles have appeared in the literature reflecting further appli-
cations and properties of mappings H,F , (see [3-8] and references therein).
In recent years several extensions and generalizations have been considered
for classical convexity. A significant generalization of convex functions is
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the invex functions introduced by Hanson in [9]. Weir and Mond in [10]
introduced the concept of preinvex functions and applied it to prove the suf-
ficient optimality conditions and duality in nonlinear programming. There
have been some works in the literature which are devoted to investigating
preinvex functions (see [10-17]) and references therein).

Now, we recall some notions which will be used throughout the paper. A
set S ⊆ R is said to be invex with respect to the map η : S × S → R, if for
every x, y ∈ S and t ∈ [0, 1], y + tη(x, y) ∈ S. The mapping η is said to be
satisfies the condition C if for every x, y ∈ S and t ∈ [0, 1],

η(y, y + tη(x, y)) = −tη(x, y),
η(x, y + tη(x, y)) = (1− t)η(x, y).

For every x, y ∈ S and every t1, t2 ∈ [0, 1] from condition C we have
(1.4) η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y).

Recall that for every x, y ∈ S, the η−path Pxy is a subset of S defined by
Pxy := {x+ tη(x, y)| 0 ≤ t ≤ 1}.

It is obvious that every convex set is invex with respect to the map η(x, y) =
x − y, but there exist invex sets which are not convex. Let S ⊆ R be an
invex set with respect to η : S × S → R. Then the function f : S → R is
said to be preinvex with respect to η, if for every x, y ∈ S and t ∈ [0, 1],
(1.5) f(y + tη(x, y)) ≤ tf(x) + (1− t)f(y).

Every convex function is preinvex with respect to the map η(x, y) = x − y
but the converse does not holds. The Hermite-Hadamard’s inequality for
preinvex functions is introduced in [18] by M.A. Noor as,

(1.6) f(a+
1

2
η(b, a)) ≤ 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx ≤ f(a) + f(b)

2
,

where a, b ∈ S. Since then numerus articles have been published in this
category see, for example (see [20-23] and references therein).

The analogue of the arithmetic mean in the context of finite measure
spaces (X,Σ, µ) is the integral arithmetic mean, with, for a µ−integrable
function g : X → R is the number

M1(g) :=
1

µ(X)

∫
X
gdµ.

We recall the following Jensen’s type inequality for preinvex functions from
[19].

Theorem 1.3. Let (X,Σ, µ) be a finite measure space and g : X → R be a
µ−integrable function. Suppose that S ⊆ R is an invex set with respect to
η : S × S → R and S includes the image of g. If f : S → R is a preinvex
function then,
(i) M1(g) ∈ S.
(ii) If ψ(x) := η(g(x),M1(g)) and ψ(x) ̸= 0 for every x ∈ X, such that
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g(x) ̸= M1(g) then, there exists K ∈ R such that the following inequality
holds

(1.7) f

(
1

µ(X)

∫
X
gdµ

)
≤ 1

µ(X)

∫
X
(fog)dµ−K

1

µ(X)

∫
X
ψdµ,

provided that ψ and fog are µ−integrable.

In this paper corresponding to mappings H and F , we introduce two new
mappings and establish several results in connection to Hermite-Hadamard’s
type inequality (1.6) for preinvex functions.

2. Main results

In this section we introduce two new mappings which are generalizations
of mappings H and F. Motivated by [1], we define the mapping H : [0, 1] →
R, as follow,

H(t) :=
1

η(b, a)

∫ a+η(b,a)

a
f
(
a+

1

2
η(b, a) + tη(y, a+

1

2
η(b, a))

)
dy.

where S is an invex set S with respect to η : S × S → R, and f is a real
valued function defined on S.
Note that if S is an interval in R and η(y, x) = y − x, for every x, y ∈ S,
then H = H.

Theorem 2.1. Let S ⊆ R be an invex set with respect to η : S×S → [0,+∞).
Suppose that a, b ∈ S with η(b, a) ̸= 0 and c := a+ η(b, a). If f : S → R is a
preinvex function then
(i) H is a convex function on [0, 1].
(ii) If η satisfies condition C then, the following bounds hold

(2.1) sup
t∈[0,1]

H(t) = H(1) =
1

η(b, a)

∫ c

a
f(x)dx,

and

(2.2) inf
t∈[0,1]

H(t) = H(0) = f
(
a+

1

2
η(b, a)

)
.

(iii) If η satisfies condition C then, H increases monotonically on [0, 1].
(iv) If η satisfies condition C then, the following inequalities hold

f(a+
1

2
η(b, a))

≤ 1

η(b, a)

∫ c

a
f
(c+ y

2

)
dy

=
2

η(b, a)

∫ a+ 3
4
η(b,a)

a+ 1
4
η(b,a)

f(u)du

≤ 1

2

(
f
(
a+

1

2
η(b, a)

)
+

1

η(b, a)

∫ c

a
f(x)dx

)
.
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Proof. (i) It is an immediate consequence of definition of H and preinvexity
of f.
(ii) By preinvexity of f we have

H(t) ≤ 1

η(b, a)

∫ c

a

(
(1− t)f(a+

1

2
η(b, a)) + tf(x)

)
dx

= (1− t)f(a+
1

2
η(b, a)) + t

1

η(b, a)

∫ c

a
f(x)dx.

Suppose that the function h : [0, 1] → R is defined by

h(t) := (1− t)f(a+
1

2
η(b, a)) + t

1

η(b, a)

∫ c

a
f(x)dx.

Then, by Hermite-Hadamard’s inequality (1.6) we get

h′(t) =
1

η(b, a)

∫ c

a
f(x)dx− f(a+

1

2
η(b, a)) ≥ 0,

which shows that h is monotonically increasing on [0, 1]. Hence, for every
t ∈ [0, 1] we get

H(t) ≤ h(1) =
1

η(b, a)

∫ c

a
f(x)dx,

thus

(2.3) sup
t∈[0,1]

H(t) ≤ 1

η(b, a)

∫ c

a
f(x)dx.

On the other hand, if we put the change of variable y := a+sη(b, a), s ∈ [0, 1],
and using (1.4) then, we have

(2.4)
H(1) =

1

η(b, a)

∫ c

a
f
(
a+

1

2
η(b, a) + η(y, a+

1

2
η(b, a))

)
dy

=

∫ 1

0
f
(
a+ sη(b, a))ds =

1

η(b, a)

∫ a+η(b,a)

a
f(x)dx.

Combining (2.3) and (2.4) implies that
sup
t∈[0,1]

H(t) = H(1),

and the equality (2.1) is proved. Again, by putting change of variable x :=
a+ sη(b, a), s ∈ [0, 1], and using (1.4) we obtain

(2.5)

∫ c

a
η(x, a+

1

2
η(b, a))dx

= η(b, a)2
∫ 1

0
(s− 1

2
)ds = 0.

Now, we define the function g : Pab → Pab as

g(x) := a+
1

2
η(b, a) + tη(x, a+

1

2
η(b, a)).
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Integrating in Pab and using (2.5) implies that

(2.6) M1(g) =
1

η(b, a)

∫ c

a
g(x)dx = a+

1

2
η(b, a).

Using (1.4) and (2.5) deduce that

(2.7)

1

η(b, a)

∫ c

a
η(g(x),M1(g))dx

=
1

η(b, a)

∫ c

a
η
(
a+

1

2
η(b, a) + tη(x, a+

1

2
η(b, a)), a+

1

2
η(b, a)

)
dx

=
t

η(b, a)

∫ c

a
η(x, a+

1

2
η(b, a))dx = 0.

It is easy to see that η(g(x),M1(g)) ̸= 0, when g(x) ̸= M1(g). Therefore,
by using Jenson’s inequality (1.7) and inequalities (2.5) and (2.7), for every
t ∈ [0, 1] we obtain

H(t) ≥ f
( 1

η(b, a)

∫ c

a

(
a+

1

2
η(b, a) + tη(y, a+

1

2
η(b, a))

)
dy

+K
1

η(b, a)

∫ c

a
η(g(x),M1(g))dx

= f
( 1

η(b, a)

∫ c

a

(
a+

1

2
η(b, a)) + t

∫ c

a
η(y, a+

1

2
η(b, a))

)
dy

= f
(
a+

1

2
η(b, a)

)
= H(0),

for some K ∈ R. Therefore, inft∈[0,1] H(t) ≥ H(0) and the equality (2.17) is
proved.
(iii) By convexity of H and using part (ii), for every 1 ≥ s > t > 0 we have

H(s)− H(t)

s− t
≥ H(t)− H(0)

t− 0
≥ 0,

hence H(s) ≥ H(t).
(iv) By using (1.4) and putting y := a+ sη(b, a), s ∈ [0, 1] then,

(2.8)

H(
1

2
) =

1

η(b, a)

×
∫ a+η(b,a)

a
f
(
a+

1

2
η(b, a) +

1

2
η(y, a+

1

2
η(b, a))

)
dy

=

∫ 1

0
f
(
a+

1

2
(s+

1

2
)η(b, a)

)
ds

=
1

η(b, a)

∫ c

a
f
(c+ y

2

)
dy

=
2

η(b, a)

∫ a+ 3
4
η(b,a)

a+ 1
4
η(b,a)

f(u)du.
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On the other hand, since H is convex on [0, 1], using the Hermite-Hadamard’s
inequality (1.1) and part (iii) yield

(2.9)

f
(
a+

1

2
η(b, a)

)
= H(0) ≤ H(

1

2
)

≤
∫ 1

0
H(t)dt ≤ H(0) + H(1)

2

=
1

2

(
f
(
a+

1

2
η(b, a)

)
+

1

η(b, a)

∫ c

a
f(x)dx

)
.

Now, combining (2.8) and (2.9) get us the required result in (iv) and proof
is completed.

Let S be an invex set S with respect to η : S × S → R, and f be a real
valued function defined on S. Motivated by [2] we define the double integral
mapping F : [0, 1] → R as follow

F(t) := 1

η(b, a)2

∫ a+η(b,a)

a

∫ a+η(b,a)

a
f(x+ tη(y, x))dxdy.

where a, b ∈ S.
Note that, when S is an interval in R and η(y, x) = y−x, for every x, y ∈ S,
then F = F.

Theorem 2.2. Let S ⊆ R be an invex set with respect to η : S×S → [0,+∞)
and a, b ∈ S with η(b, a) ̸= 0. If c := a+η(b, a), R := Pab×Pab and f : S → R
is a preinvex function then
(i) F(12 + τ) = F(12 − τ) for every τ ∈ [0, 12 ] and F(t) = F(1 − t), for every
t ∈ [0, 1]
(ii) If η satisfies condition C then, F is a convex function on [0, 1].
(iii) If η satisfies condition C then, we have the bounds

sup
t∈[0,1]

F(t) = F(0) = F(1) = 1

η(b, a)

∫ c

a
f(x)dx.

and
inf

t∈[0,1]
F(t) = F(1

2
)

=
1

η(b, a)2

∫ c

a

∫ c

a
f
(
x+

1

2
η(y, x)

)
dxdy.

(iv) If η satisfies condition C then the following inequality holds

f
(
a+

1

2
η(b, a)) ≤ F(1

2
).

(v) If η satisfies condition C then, F decreases monotonically on [0, 12 ] and
increases monotonically on [0, 12 ].
(vi) For every t ∈ [0, 1] the following inequality holds

H(t) ≤ F(t).
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Proof. (i) This part is obvious.
(ii) Fix t1, t2 ∈ [0, 1]. By using (1.4), for every λ ∈ [0, 1] we get

x+ ((1− λ)t1 + λt2)η(y, x)

= x+ t1η(y, x) + λ(t2 − t1)η(y, x)

= x+ t1η(y, x) + λη(x+ t2η(y, x), x+ t1η(y, x)).

Hence by preinvexity of f we have
f(x+ ((1− λ)t1 + λt2)η(y, x))

≤ (1− λ)f(x+ t1η(y, x)) + λf(x+ t2η(y, x)).

Integrating the above inequality on R implies that
F((1− λ)t1 + λt2) ≤ (1− λ)F(t1) + λF(t2),

which shows the convexity of F.
(iii) For every x, y ∈ Pab and t ∈ [0, 1] we have

f(x+ tη(y, x)) ≤ (1− t)f(x) + tf(y).

By integrating the above inequality in R we get∫ c

a

∫ c

a
f(x+ tη(y, x))dxdy ≤ η(b, a)

∫ c

a
f(x)dx.

This shows that for every t ∈ [0, 1],

(2.10) F(t) ≤ 1

η(b, a)

∫ c

a
f(x)dx = F(0).

On the other hand, if we use the change of variables x := a+ sη(b, a), y :=
a+ tη(b, a) then by simple computation we get

∂(x, y)

∂(s, t)
=

(
η(b, a) 0

0 η(b, a)

)
,

hence det ∂(x,y)
∂(s,t) = η(b, a)2. By using this equality and (1.4) we obtain

(2.11)

F(1) = 1

η(b, a)2

∫ a+η(b,a)

a

∫ a+η(b,a)

a
f(x+ η(y, x))dxdy

=
1

η(b, a)2

∫ 1

0

∫ 1

0
f(a+ tη(b, a))η(b, a)2dtds

=

∫ 1

0
f(a+ tη(b, a))dt

=
1

η(b, a)

∫ c

a
f(x)dx.

Combining (2.10) and(2.11) deduce that,

supF(t)t∈[0,1] = F(0) = F(1),
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hence the proof of the first part of (iii) is completed. For second part, since
f is preinvex and η satisfies condition C, for every t ∈ [0, 1] we have

f(x+
1

2
η(y, x)) = f(x+ tη(y, x) +

1

2
(1− 2t)η(y, x))

= f(x+ tη(y, x) +
1

2
η
(
x+ (1− t)η(y, x), x+ tη(y, x))

)
≤ 1

2

[
f(x+ tη(y, x)) + f(x+ (1− t)η(y, x))

]
.

Integrating this inequality in R we have∫ c

a

∫ c

a
f(x+

1

2
η(y, x))dxdy

≤ 1

2

∫ c

a

∫ c

a

(
f(x+ tη(y, x)) + f(x+ (1− t)η(y, x))

)
dxdy

=

∫ c

a

∫ c

a
f(x+ tη(y, x))dxdy,

which implies that F(t) ≥ F(12) for all t ∈ [0, 1], hence the statement is thus
proved.
(iv) For every x, y ∈ Pab, with putting

x := a+ sη(b, a), y := a+ tη(b, a), s, t ∈ [0, 1],

and (1.4) we have

(2.12)
F(1

2
) =

1

η(b, a)2

∫ c

a

∫ c

a
f(x+

1

2
η(y, x))dxdy

=

∫ 1

0

∫ 1

0
f
(
a+

1

2
(s+ t)η(b, a)

)
dsdt.

Now, we consider two cases:
Case1. If s + t = 1 then, a simple computation shows that the right hand
side of (2.12) is equal to f(a+ η(b, a)), hence F(12) = f(a+ 1

2η(b, a)).
Case2. If s+ t ̸= 1 then, we define the function g : R1 → Pab as follow,

g(x, y) := x+
1

2
η(y, x),

where, R1 := Pab × Pab −A, and

A := {(x, y)| x = a+ sη(b, a), y = a+ tη(b, a), s+ t = 1}.

Note that, if we want to integrate over the R, removing the set A doesn’t
make any difference because it form a null set. Hence, integrating in R
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implies that

(2.13)

M1(g) =
1

η(b, a)2

∫ c

a

∫ c

a
g(x, y)dxdy

=
1

η(b, a)2

[∫ c

a

∫ c

a
xdxdy +

1

2

∫ c

a

∫ c

a
η(y, x)dxdy

]
= a+

1

2
η(b, a).

Indeed, if we put

(2.14) m :=
1

2η(b, a)2

∫ c

a

∫ c

a
η(y, x)dxdy,

then, by using (1.4) we obtain

(2.15)

m =
1

2η(b, a)2

×
∫ 1

0

∫ 1

0
η
(
a+ sη(b, a), a+ tη(b, a)

)
η(b, a)2dsdt

=
η(b, a)

2

∫ 1

0

∫ 1

0
(s− t)dsdt = 0.

On the other hand, it is easy to see that

η
(
g(x, y),M1(g)

)
=

1

2
(s+ t− 1)η(b, a) ̸= 0.

Now, by Jensen’s inequality (1.7), there exits K ∈ R such that

F(1
2
) =

1

η(b, a)2

∫ c

a

∫ c

a
f(x+

1

2
η(y, x))dxdy

≥ f
( 1

η(b, a)2

∫ c

a

∫ c

a

(
x+

1

2
η(y, x)

)
dxdy

)
+K

1

η(b, a)2

∫ c

a

∫ c

a
η
(
x+

1

2
η(y, x), a+

1

2
η(b, a)

)
dxdy

= f
( 1

η(b, a)2

∫ c

a

∫ c

a
xdxdy +

1

2η(b, a)2

∫ c

a

∫ c

a
η(y, x)dxdy

)
+K

1

η(b, a)2

∫ c

a

∫ c

a
η
(
x+

1

2
η(y, x), a+

1

2
η(b, a)

)
dxdy

= f
(
a+

1

2
η(b, a) +m

)
+ n,

in which m defied in (2.14) and

n := K
1

η(b, a)2

∫ c

a

∫ c

a
η
(
x+

1

2
η(y, x), a+

1

2
η(b, a)

)
dxdy.

Note that, m = 0 by (2.15) and it is easy to see that
1

η(b, a)2

∫ c

a

∫ c

a
xdxdy = a+

1

2
η(b, a).
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Now, by a simple computation we have

(2.16)
n =

1

2
K

∫ 1

0

∫ 1

0
η
(
a+

1

2
(t+ s)η(b, a), a+

1

2
η(b, a)

)
dsdt

=
1

4
Kη(b, a)

∫ 1

0

∫ 1

0
(s+ t− 1)dsdt = 0,

this completes the proof of part (iv).
(v) By statement (iii), for every t ∈ [0, 1], F(t) ≥ F(12) so, by convexity of
F, for every 1 ≥ s > t > 1

2 we have

F(s)− F(t)
s− t

≥
F(t)− F(12)

t− 1
2

≥ 0,

hence F(s) ≥ F(t). The fact that F decreases monotonically on [0, 12 ] follows
from the above conclusion and using statement (i).
(vi) Let y = a+ s0η(b, a) for some s0 ∈ [0, 1]. If we put x := a+ sη(b, a) and
use (1.4) then, we have∫ c

a
(x+ tη(y, x))dx

=

∫ c

a
xdx+ t

∫ c

a
η(y, x)dx

= η(b, a)

(∫ 1

0
(a+ sη(b, a))ds+ tη(y, x)

∫ 1

0
(s0 − s)ds

)
= η(b, a)

(
a+

1

2
η(b, a) + tη(b, a)(s0 −

1

2
)
)

= η(b, a)
(
a+

1

2
η(b, a) + tη

(
y, a+

1

2
η(b, a)

))
.

This shows that
1

η(b, a)

∫ c

a
(x+ tη(y, x))dx = a+

1

2
η(b, a) + tη

(
y, a+

1

2
η(b, a)

)
,

hence

(2.17) H(t) =
1

η(b, a)

∫ c

a
f

(
1

η(b, a)

∫ c

a
(x+ tη(y, x))dx

)
dy.

Now, we consider three cases:
Case1. If x = a+ 1

2η(b, a) then, by using (2.17) and a simple computation
we see that F(t) = H(t), for all t ∈ [0, 1].
Case2. If t = 1 then, it is easy to see that, F(1) = H(1).
Case3. If t ̸= 1, x ̸= a+ 1

2η(b, a) then, we define the function g : Qab → Pab

as follow
g(x) := x+ tη(y, x),

where, Qab := Pab − {a + 1
2η(b, a)}. Note that, if we want to integrate over

the Pab, then removing the a+ 1
2η(b, a) doesn’t make any difference because
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it form a null set. It is easy to see that

M1(g) = a+
1

2
η(b, a) + tη

(
y, a+

1

2
η(b, a)

)
,

and for every x ∈ Qab,

η(g(x),M1(g)) = (1− t)(s− 1

2
)η(b, a) ̸= 0.

Hence,

(2.18)

1

η(b, a)

∫ c

a
η(g(x),M1(g))dx

= (1− t)η(b, a)

∫ 1

0

(
s− 1

2

)
ds = 0.

Now, by using (2.17), (2.18) and Jenson’s inequality (1.7) we find K ∈ R
such that

H(t) ≤ 1

η(b, a)

∫ c

a

[ 1

η(b, a)

∫ c

a
f
(
x+ tη(y, x)

)
dx

−K
1

η(b, a)

∫ c

a
η(g(x),M1(g))dx

]
dy

=
1

η(b, a)2

∫ c

a

∫ c

a
f
(
x+ tη(y, x)

)
dxdy

= F(t),
for all t ∈ [0, 1) and the proof is completed.

Note that, in the special case if we take η(y, x) := y − x then, η satisfies
conditions C and also S and f will be a convex set and a convex function,
respectively. Therefore, theorems 2.1 and 2.2 gives us Dragomir’s results
introduced in Theorems 1.1 and 1.2, respectively.
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